清华北大经管社科数据库有哪些? 不要羡慕嫉妒恨!
凡是搞计量经济的,都关注这个号了
邮箱:econometrics666@126.com
之前,咱们圈子引荐过一些数据库,如下:1.这40个微观数据库够你博士毕业了;2.中国工业企业数据库匹配160大步骤的完整程序和相应数据;3.中国省/地级市夜间灯光数据;4.1997-2014中国市场化指数权威版本;5.1998-2016年中国地级市年均PM2.5;6.计量经济圈经济社会等数据库合集;7.中国方言,官员, 行政审批和省长数据库开放;8.2005-2015中国分省分行业CO2数据;9.国际贸易研究中的数据演进与当代问题;10.经济学研究常用中国微观数据手册。
之前,咱们圈子引荐的“金融领域三大中文数据库, CSMAR, CCER, Wind和CNRDS”,受到很多高校金融经济学者的欢迎。今天,咱们圈子进一步引荐清华大学和北京大学经济、管理等社科数据库。知名高校的特色在于其拥有很多最新数据库的使用权,可很多学校由于缺少经费连一些常用数据库都没有购买,这又谈何与其他学校进行竞争?巧妇也难为无米之炊,造成的后果是计量社群部分地成为了一个高效的数据库使用交流平台。
1.清华大学经济、管理等社科数据库:
2.北京大学经济、管理等社科数据库:
之前,咱们圈子引荐了一些处理内生性问题的文章,各位学者可以参看以下文章:1.“内生性” 到底是什么鬼? New Yorker告诉你;2.Heckman两步法的内生性问题;3.IV和GMM相关估计步骤,内生性、异方差性等检验方法;4.最全估计方法,解决遗漏变量偏差,内生性,混淆变量和相关问题;5.忽略干扰因素,内生性,遗漏变量偏差及相关问题下的估计;6.非线性面板模型中内生性解决方案;7.内生性处理的秘密武器-工具变量估计;8.内生性处理方法与进展;9.内生性问题和倾向得分匹配;10.你的内生性解决方式out, ERM独领风骚;11.面板数据里处理多重高维固定效应的神器;12.面板数据是怎样处理内生性的;13.计量分析中的内生性问题综述;14.工具变量IV与内生性处理的解读;15.一份改变实证研究的内生性处理思维导图;16.Top期刊里不同来源内生性处理方法;17.面板数据中heckman方法和程序;18.控制函数法CF, 处理内生性的广义方法;19.二值选择模型内生性检验方法;20.2SRI还是2SPS, 内生性问题的二阶段CF法实现;21.内生变量的交互项如何寻工具变量;22.显著不显著的后背是什么
前一日,咱们圈子引荐了“实证研究中用到的200篇文章, 社科学者常备toolkit”,各位学者甚至要求将文章发送其邮箱进行深度学习。不少高校院长甚至校长也要求门下的研究生有选择性地阅读相关文章,为日后更为严谨规范的实证计量分析打下坚实的基础。
下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。
2年,计量经济圈公众号近1000篇文章,
Econometrics Circle
数据系列:空间矩阵 | 工企数据 | PM2.5 | 市场化指数 | CO2数据 | 夜间灯光 | 官员方言 | 微观数据 |
计量系列:匹配方法 | 内生性 | 工具变量 | DID | 面板数据 | 常用TOOL | 中介调节 | 时间序列 | RDD断点 | 合成控制 |
数据处理:Stata | R | Python | 缺失值 | CHIP/ CHNS/CHARLS/CFPS/CGSS等 |
干货系列:能源环境 | 效率研究 | 空间计量 | 国际经贸 | 计量软件 | 商科研究 | 机器学习 | SSCI | CSSCI | SSCI查询 |
计量经济圈组织了一个计量社群,有如下特征:热情互助最多、前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。